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Abstract

The study of EMP phenomenon has promoted the development of techniques to
investigate transient electromagnetic response data. Characterization of the
EMP transient response information is necessary to evaluate the performance of
that system in a hostile environment. An efficient technique to characterize
this performance is to fit an electromagnetic model to the data.

In this paper we describe the performance of three different signal
processing techniques applied to parameterize a body from noisy experimental
electromagnetic transient response data. We briefly describe the technigues
which range from the well-known Prony method to the more sophisticated
extended Kalman filter and finally to the hignly sopnhisticated maximum
likelinhood identifier. We compare the performance of these algorithms and
discuss their tradeoffs.

1.0 Introduction

The study of EMP phenomenon has promoted the development of techniques to
investigate transient electromagnetic response data. The characterization of
EMP transient response information is a matter of national concern. Since
large amounts of data are necessary to pointwise define an arbitrary transient
response, it is quite reasonable to "identify" a parameterization or model of
the "response". The model developed is useful, not only to merely
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parameterize the response, but also to give more meaningful information about
the pnysical process producing the response itself.

In this paper we discuss the implementation of signal processing
algorithms which can be used to "estimate" the parameters of an
electromagnetic response model from noisy transient measurements. The
technigues employed range from simplified algorithms which perform well for
nigh signal-to-noise ratios, to complex model-pased estimators, which perform
well for low signal-to-noise ratios. In Section 2 we present the necessary
packground information. The various algorithms are discussed (simply) in
Section 3. In Section 4, the application to transient EM data is presented.

2.0 Background

In electromagnetic wave theory it is possible to represent the response
of an object to various excitations by the singularity expansion method
(SEM). Tne SEM represents an electromagnetic variable (field, current, etc.)
as the impulse response of the object (1], i.e.,

s. t

1
Uy (£,0) = g n (e,s;)y; (p)e (1)

where

vector impulse response

complex coupling coefficient

complex natural mode descrioing the behavior of gp over tne object
exciting field characteristics (e.g., polarization, direction of

o |< _-:51__|,<:

evidence, etc.)
spatial coordinates or position
complex natural frequency (or pole, or natural resonance)

w |9

i

The sets of parameters ({si}, {!i(g)}) are dependent on the
object parameters only and independent of the excitation. The effect of the
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exciting wave is contained entirely within the set of coupling coefficients
{ni(g, si)} whicn are independent of the position on the body.‘ Thus,

the electromagnetic interaction is completely characterized by these sets. In
fact, the response to an arbitrarily snaped waveform can be generated using
concepts of linear system theory where the response y to an arbitrary impulse
is given by the convolution(*) )

y(r,t) = Up(g,t) * u(r,t) (2)

Implicit in (2) is that e is the same for the new exciting waveform.
However, ({si}, {!i(f)}) are invariant; therefore, these sets can
be used to "parameterize" a given object for any excitation. We are not
concerned at this point in the partitioning of the natural modes and coupling
coefficients, so we define the set of complex residues at a point I, as

Ci(xy): = n;(e,5:)v;(x,) (3)

and for this work concern ourselves only witn scalar response functions.f

Trus, the impulse response of the linear system of (2) can be represented as

N sit
y(t) = H(t) * &(t) = .zl c;e (4)
1=

where

S; s=0; + jwi, o the damping ratio and w the natural frequency

t1t should be noted that the sophisticated model-based estimators

discussed subsequently can be used to identify separately the nj and vi
parameters if desired as well as vector response functions (multiple —
measurement instruments); nowever, this work was not feasible in the allotted
time.
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H(t) is the object impulse response at position Iy i.e.,
Up (go,t). Thus, the parameterization of the object can be stated simply
by the electromagnetic parameter estimation problem.

"Given a set of noisy electromagnetic response'r measurements

{z(t)}, find the "best" (minimum variance) estimates oy, &},

{ﬁi}) characterizing an unknown object.™

We will assume that the noise contaminates the response y as

z(t) = y(t) + v(t) (5)
where v is zero mean, Gaussian with covariance R.

Before we begin discussing the various estimation algoritnms applied to
this problem, we must define an alternate way of representing a linear system
which is equivalent to (3) and (4). Recall from ordinary differential
equations [2] that (4) represents the solution of a NED order differential
equation. It is well known that this equation can be broken down to the

solution of N first order differential equations of the general form:

x(t) = Fx(t) + g u(t)

n'x(t) (6)

y(t)

where ,
x is the N-state vector, u, y are the respective input and output.
F is a N x N matrix and g, h are N-vectors' T

tThis representation is not limited only to scalar systems, e.g. u and y
can be vectors and g, hT become matrices.

ttThis representation is not limited only to scalar systems, e.g. u and y
can be vectors and g, hT become matrices.
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This representation is called the "state space" form in linear system

theory [2] and forms the basis of various parameter estimation schemes (e.g.,
see [4]). It is easily shown that the impulse response of (6) is

N
y(t) =ne g= ] Ce * (7

or in transfer function form, we have

H(s) = N1 (sI-F)"}g = § ! 8)
TR AT Gy (

In the next section, we discuss three parameter estimation algorithms
applied to this problem: (1) Interactive Prony's technique which utilizes the
models of (6), or (8); (2) extended Kalman filter technique; and (3) the
maximum likelihood identifier, both of which use the state space form of (6).

3.0 Parameter Estimation Algorithms

In this section we discuss the three parameter estimation algorithms

employed to extract the set of object parameters ({;, &}, {Ei}) from

noisy measurement data. The algorithms employed were: (i) Interactive
Prony's technique (IPT); (ii) extended Kalman filter (EKF); and (iii) maximum
likelinood identifier (MXLKID).. We will not discuss the mathematical details
of these algorithms, out rather include the primary references for the
interested reader (see Appendices A, B, and C for details). After presenting
each algorithm, we will compare them and discuss the various tradeoffs.

The Interactive Prony's technigue (IPT) is basically a linear least
squares estimator for poles in the discrete (z transform) domain [1]. The
algorithm is depicted (simply) in Fig. 1. Depending on the signal-to-noise
ratio (SNR) [3] either the impulse response (high SNR) or the autocorrelation
response (low SNR) is estimated using fast Fourier transforms or sample
autocorrelation estimators, respectively. The filtered data is then
"windowed” and poles estimated from each data window solving a set of linear
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matrix equations to obtain linear least sguares estimates of the coefficients
of a polynomial, the roots of which are the discrete (z domain) poles. These
poles are then transformed to the continuous domain and identified directly
with the object response [1]. This technique is repeated by the processor
many times and "pole clusters" are obtained. The average pole values are then
selected and sample statistics calculated. It should be noted that the
discrete or sampled data domain representation is necessary because of the use
of "sampled" response data. Not accounting for the sampling pnenomenon, will
result in erroneous estimates for the continuous poles.

The extended Kalman filter (EKF) is basically a nonlinear state
estimation algorithm which can be used to estimate unknown parameters by
redefining them as states. Recall that a state estimator is a computer
algorithm which may incorporate: (i) knowledge of the physical process
phenomonology (EM response); (ii) knowledge of the measurement system; (iii)
knowledge of process and measurement uncertainties in the form of mathematical
models to produce an estimate of the state.

Most state estimators can be placed in a recursive form with the various
subtleties emerging in the calculation of the current estimate (Rold)' The

standard tecnnique employed is based on updating the current estimate as a new
piece of measurement data becomes available. The state estimates generally
take the recurrence form

Rew = "(old *+ KeEnew (9)
where
Cew = &~ 2014 =% - N(R)14) (10)

Here we see that the new state estimate is obtained by correcting the old

estimate by a K-weighted amount. The term €rew 1S the new information or
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innovations[al, i.e., it is the difference between the actual
measurement and the predicted measurement (iold) based on our old state

estimate. The computation of the weight K depends on tne error criterion used
(e.g., mean-squared, absolute, etc.) [5, 6, 7].

Note that a physical process model (e.g. state equation in (6) for _linear
case) is used to produce iold' The interested reader should see Gelb

for details.

Thus, the EKF is a state estimator capaple of producing estimates for
nonlinear as well as linear processes and measurements. A simplified

diagram of the algorithm is depicted in Fig. 2. Here we see that the
state estimate Rold is calculated (or predicted) based on the process model,

after the estimator is initialized. The calculation of the gain, K, and
innovations, €, follows. Note that the measurement at a given time step is .
utilized in calculating the current €. From these calculations the new or
corrected state estimate is obtained. The algorithm continues in this loop
processing masurement data as it pecomes available. This processing is
considered on-line because it can be accomplished in conjunction with the
response measurements, i.e., the state estimates are updated in real time,
each time a new measurement becomes available.

The final algorithm is the maximum likelihood identifier (MXLKID). The
MXLKID algorithm is a complex off-line technique which utilizes a parameter
optimization algorithm looped around the EKF to obtain parameter estimates.
The algorithm maximizes the likelihood function, or equivalently minimizes the
negative log-likelihood function J(6), i.e.

N
mineJ(_e_) - .1/zsm(2n)-1/2izl & oy (110 (Rs(i,_e_))'lgnew(i,e)+

2nIR (1,8 (11)
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where
€rew is the innovation of egquation (10)
Rs is the corresponding innovation covariance matrix.

The parameter estimator (optimization algorithm) is usually a
gradient-based tecnnique (8, 91, i.e.,

-~ _A aJ
®ew = %1d * PH 3% (12)

where 6 are the parameter estimates
p is a step parameter
H is a weighting matrix dependent on the particular optimization
technique used).

The simplified algorithm operation is depicted in Fig. 3. The Kalman
filter is used to produce uncorrelated innovations, ¢, from the correlated
measurements, z. The log-likelihood function (11) is calculated using results
from the Kalman filter. In some optimization algorithms the filter is also
used to calculate elements in the weighting matrix, H (e.g. see [9]).

Before we discuss the performance of these three algorithms on the
electromagnetic parameter estimation problem, we first compare their basic
attributes. Referring to Table I, we see that the interactive Prony algorithm
is a simple tecnnique valid for high SNR, and because of the lack of system
modeling it is restricted in scope of application (linear, time invariant
problems only). Of course, because of its simplicity, it is less complex and
faster than the EKF and MXLKID algorithms. The IPT requires many runs to
generate an ensemble of samples for statistical validation of the parameter
estimates whereas the two other techniques have statistical validation built

in.
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TABLE 1:

Identification Algorithm Comparisons

IPT

EKF

MXLKID

Problem Scope

linear, time invariant

linear, nonlinear,
time varying

linear, nonlinear

Signal Models scalar vector vector

Noise Models none stationary, non- stationary, non-
stationary stationary

Complexity simplet complex very complex

Application off-line on-line off-line

Limitations nigh SNR medium SNR low SNR

Computer Time | smallf médium large

Accuracy reasonable reasonable excellent

Statistical

vValidation sample calculations® generated generated

t Neglecting FFT, Autocorrelation, and/or Ensemble Statistic Calculations
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The EKF and MXLKID algorithms appear similar in many categories, which is
expected since the MXLKID technique actually uses an EKF as an integral part
of its computation. The main differences between MXLKID and the EKF are
application, complexity, and accuracy. The MXLKID algoritnm is more accurate,
however tne price paid is complexity, computer time and the necessity of
running the algorithm off-line, i.e., with a complete set of measurements
available beforehand. If enough data is available the EKF can yield
comparable results.

This completes our discussion of the parameter estimation algorithms. In
the next section we discuss the application of these techniques to the EM

parameterization problem.

4.0 EM Transient Response Application

The three parameter estimation techniques presented in the previous
sections have been applied to transient electromagnetic pulse (EMP) response
data. We begin this section with a brief description of the experiment whicn
produced the data of interest, then discuss the approach taken to abstract the
pole parameters. The initial phase of the pole extraction approach is the
acquisition and preliminary analysis of the data. Certain assumptions
concerning signal and noise modeling must be made before parameter estimation
techniques can be applied. 1In the last part of this section we discuss the
signal and noise modeling assumptions made, then we present pole extraction
results for the three sets of data analyzed.

The experimental configuraton (Fig. 4) consists of a monocone source
antenna, a movable verticle ground plane, and a taret cylinder all mounted on
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a conducting symmetry plane. A sensor for detecting current flows is located
near the base of the cylinder as shown in Fig. 5. The sensor placement allows
observation of the odd-narmonic response modes which are induced on the
cylinder and its image in the symmetry plane.

The response of the cylinder to an electromagnetic pulse is dependent on
the -distance, h, from the axis of the cylinder to the reflecting ground
plane. We acquired data for three such responses, as shown in Fig. 6,
corresponding to n== (ground plane removed), h=50 cm, and h=10 cm. More
resonant responses are attained as h becomes smaller.

The signal modeling approacn is the Singularity expansion Method (SEM)
introduced earlier [1]. The electromagnetic variable (current in this case)
is represented as a sum of singular response as in equation (1), which we
repeat below:

s. t

Uy(z,t) = )13 n (e,8;)y; (p)e * (13)

since the probe location and exiting field characteristics are fixed for a
given experiment we can lump T and e dependent terms into one complex residue
which we designate Ci' The measurement process then extracts the real part
of the response and also includes random measurement noise, v. The parameter
model for this experiment with measurement noise is the following:

N s.t
2(t) = RelU, ()] + v(t) = 2 [C;e T3+ vt) Q4

i=1
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where _
z(t) is the measured signal of interest

v(t) is the measurement noise
N = 6%

Tne pole extraction problem then becomes:

Identify (Ci,wi,oi)
for i = 1,2,3 given {z(t)}

An alternative noise model considers process as well as measurement
noise. Process noise is correlated (as opposed to independent or "white"
noise cnaracteristic of a measurement probe) and typically has power spectral
components within the signal bandwidth of interest. Process noise sources can
include unmodeled EMP reflections, unknown environmental electromagnetics, and
signal mismodeling. Process noises are modeled as driving noises, and hence
are convolved with the impulse response of the object.

The following parametric model includes both process and measurement

noises:
N s. t t s.(t-1)
20t)= I Cel +f w(mer 9T .y (15)
i=1 1=0
where

w;(t) is process driving neise

* We chose the Tirst three harmonics (N=6, i.e., a complex conjugate pair of
poles for each harmonic) to form our signal model, however, because of probe
location, very little of the second harmonic was observable, therefore the
forthcoming pole extraction results will apply to the fundamental and third
narmonic only.
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The pole extraction problem in now:

Identify {Ci,mi,oi,Cov(wi)}
for i = 1,2,3 given {z(t)}

We nave the additional task of identifying the covariance (noise power) of the
driving noise. To extract poles from the three response data sets shown in
Fig. 6, the Prony technique, extended Kalman filter (EKF) and two versions of
the maximum likelihood identifier were applied. The Prony technique accounts
only for a measurement noise model, whereas the EKF uses both a process and a
measurement noise model. The maximum likelihood identifier was designed for
both cases. Version A accounted only for measurement noise whereas Version B’
included poth process and measurement noise models.

The results of the pole extraction are summarized in Figs. 7 through
12%, Fig. 13 shows the migration of the fundamental pole as distance between
tne cylinder and ground plane becomes smaller. The results from eacn of the
data analysis methods are compared to predicted results from an analytical
study [9]. Fig. 14 shows a similar plot for the third harmonic.

We can make tne following conclusions concerning tne application of
signal processing/parameter identification techniques to EM transient response
analysis. In this paper we have shown that a variety of signal processing
techniques are available for pole extraction each having trade offs in the
degree of complexity, accuracy, and the scope of signal and noise models which
can be used. After applying pole extraction techniques to real EM transient
data we can generally conclude from our results that data with a higher

* The tabulated results for EKF and maximum likelinood tecnniques show 95%
confidence intervals for the estimated parameter values. These confidence
intervals are themselves estimates generated by the processing algorithm based
upon the single data set being processed. The confidence intervals should not
pe confused with results from a thorough statistical anmalysis of the
experiment, which would involve processing an ensemble (a large statistical
set) of data records.
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signal-to-noise ratio (i.e., the more resonant responses) provide more
consistent pole estimates. The pole extraction has also, to some degree
independently verified analytical predictions [9] for this experimental
configuration.

5.0 Summary

In this paper we have discussed and compared the tradeoffs of three
popular signal processing algorithms - the interactive Prony technique, the
extended Kalman filter, and the maximum likelihood identifier and applied them
to an electromagnetic transient response experiment. The results indicate
that more consistent estimates were obtained with hign signal-to-noise ratio
signals. The results also independently validate theoretical prediction.
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Appendix A - Summary of properties of the time- and frequency-domain Prony

techniques
Time domain Frequency domafin
N 8.t N
Defining equation f(t) = Z Re F(s) = Z Ra/(s -8))
Rearrange equation - - N .
(superscript F(s) n (s ~ 8y) 2 R, n (s - se)
denotes absence of a=l a=l B=1
B = a term)
N N
o, -
Introduce Eb aax". ay = 1 Z) 8,8 i ay 1
polynomial o =
expansion %
. .88 < 2B .a _
X=e 21:8; P =1
Sample data f:L = £(18); i-O,...,Ht Fi - F('i); :L-O,....Hf
(Note: equal-spaced (Note: samples can be
samples) arbitrarily spaced and
located; s, = jmi uses
real-frequency sampling)
N-1 - -
Develop linear MiaBa = “faag Myg8q = Nygbyl = -85Fy
@ o=
system for
polynomial Hia - fﬁ“ Hia = sg'l-‘i
coefficients
L= 0,... MK nm-e‘;l
1i«0,1,.. .Hf
~ a
b8 - i Ruba
aw
{Note: aystem has N reql (Note: s8ystem has 2N real
unknoyme and )lt +1>2N upknowne and Hf +13X)
L8 &, B
Find poles Zb ag¥y - 0 z} aga = 0
s, from
s =%nx a = 1,0
e § a prece
a=1,..,,N
N N
Pind residues Z My R, = £y 2; MR =Py
ll(l from q= .
W, = x‘; M, = 1/(ay - 8)

i1 = an-aun-vnut

whera M, + 122N

1=0,..0,N,..0,M

whereufi-l_zN
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Appendix B - Extended Kalman Filter Algorithm

Prediction:
k+1
Qk+1|k = lek * f(QaIk’ %x) da |
k+l |
Bkt T E:(Qk[k)ﬁalk +ﬁ_a|kFT(9k|k) + Qa] da
k
Innovation:

A
Skl = Zel M)

S T
Rie1]k = O e i (an i) * Reny

Correction:

~ T,A -1
Keer = Meenpict Caid (Reaqgi)

A A
ke T e[kt KB

~ A A aT
Tea1fin = [I - Kk+1“"‘k+l|kﬂﬂk+1|k[l ‘ "k+;""‘k+1|kﬂ

:
* KRt
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where
A
F(xk k):= m-xl ’ H(Qk k) = 3.“1‘)(“
I l 32
-A -A
k| Xk
and

1 .= C vg f ~ .- A

A -~
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Appendix C - Maximum Likelinood Identifier Algorithm

Log Likelihood Function Calculation:

N
J(9) = -1/2 an (2n) - 1/22J(i,g‘ow) (R‘(i,ﬁol_,)))’1 e(1.8qp)
i=1

. * ‘
+In IR‘(i,gOLD)I

Gradient Calculation:

ad.. [au(0)] . oip *28) - Yegp)  4-1, ..., p
20" |89, a6;

Hessian Calculation:

242 N . oA . oA
aZJ(o):= [3 J(GOLD)] ___Za€(1’OOLD) (R‘)-l 83(1390“)) .
i=

8 6° 305 00 96 i 80

(-1 RS S 1
+1/2 tr (R'i) -a-a-j' (R'i) | -8—9-':

.l aR; -1 aR§
+1/4 tr (Ri) T tr (Ri) _ (5)

J

* The quantities €(1,0) and R€(i,9), in these equations are generated
recursively by the Kalman filter.
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Parameter Estimate Update:

J(8) is the scalar negative log-Tlikelihood function

dJ is the p-gradient vector

¢

Q

2
g_g%gl is the pxp Hessian matrix
a8

8 is the p-parameter vector

a8, is the p-incremental parameter change vector (only
& element nonzero)

€ is the m-innovation vector
€ . . . . .
R* is the mxm innovation covariance matrix

D is the pxp diagonal Marquardt matrix (contains the square

2
root of the diagonal elements 0f<%.ﬂ%2l
a6

P is the scalar step adjustment

p is the Marquardt parameter used to weight the diagonal
Marquardt Matrix



